Simulating quantum spin systems using ultracold Rydberg atoms

Nithiwadee Thaicharoen¹, Adrien Signoles¹, Miguel Ferreira-Cao¹, Renato Ferracini Alves¹, Titus Franz¹, André Salzinger¹, Asier Piñeiro Orioli², Jürgen Berges^{2,3}, Shannon Whitlock^{1,4}, Gerhard Zürn¹, Matthias Weidemüller^{1,5}

¹ Physikalisches Institut, Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany
² Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany
³ ExtreMe Matter Institute EMMI, Planckstraße 1, 64291 Darmstadt, Germany
⁴ IPCMS (UMR 7504) and ISIS (UMR 7006), University of Strasbourg and CNRS, 67000 Strasbourg, France

⁵ University of Science and Technology of China, Hefei, Anhui 230026, China

There is a currently growing interest in utilizing dipolar interacting Rydberg spin systems to study of non-equilibrium phenomena, like thermalization or relaxation of isolated quantum systems. The tunable strong, long-range interactions as well as the long lifetimes of highly excited Rydberg atoms also provide new opportunities for investigating the dynamics of strongly correlated many-body quantum systems with beyond nearest-neighbor coupling.

We present an experimental realization of a dipolar spin model by coupling two strongly interacting Rydberg states utilizing a microwave field. We study spin dynamics by letting spin systems evolve under designated interactions. The resulting magnetizations after the dynamics are extracted from the systems utilizing a state-tomography technique and a selective ionization. The result of the dynamics will be discussed in the talk.

[1] A. Piñeiro Orioli, A. Signoles, H. Wildhagen, et al., arXiv:1703.05957 (2017).