

Towards Quantum Simulation with **Circular Rydberg Atoms**

Clément Sayrin Laboratoire Kastler Brossel

ICQSIM, 15/11/2017

Quantum simulations of spin-systems

Simulations with computer?

Utterly difficult

Quantum simulations of spin-systems

Simulations with computer?

Quantum simulations

Simulations with computer?

Linear chain of *N* spins-1/2:

- Exact diagonalization: *N* ~ 36
- Ground-state: well-known via powerful numerical techniques (DMRG)
- Dynamics... tricky! Few tens of interaction cycles only.

Quantum simulations

Objective

Simulation of a chain of interacting spins-1/2

Requirements?

• Spin 1/2

- Defect free chain of spins
- Long lifetime and strong interaction

Observe many interaction cycles

• Fully tunable Hamiltonian $H = H_0 + H_{ext} +$

Circular Rydberg atoms $|nC\rangle$

Rydberg atoms

- Very high principal quantum number, n
- Circular levels: maximum angular momentum l = |m| = n-1

Large orbit
$$r_n \sim n^2 a_0$$

Huge electric dipole matrix elements

- > Well coupled to the microwave electromagnetic field
- Strong dipole dipole interactions!

+ Long lifetimes: Several 100µs for low *l* levels Several 10 ms for circular levels

Circular Rydberg atoms

Simulating a spin 1/2

• Two circular Rydberg levels $|nC\rangle |(n+2)C\rangle$ + near-resonant drive

Dipole-dipole interaction

Tunable spin – spin interaction

- Tunable dipole dipole interaction:
 A₆ and C₆ coefficients depend on F, B
- Tunable spin spin interaction:

$$J = \frac{A_{6,48-50}}{2r^6} \qquad J_z = \frac{C_{6,48-48} - 2C_{6,48-50} + C_{6,50-50}}{4r^6}$$

J is nearly constant...

... but Jz varies significantly!

Tunable spin – spin interaction

Tunable XXZ Hamiltonian

Ponderomotive potential

- Valence electron is almost free
- Positive ponderomotive energy

$$\mathcal{E}=rac{e^2}{2m_e arepsilon_0 c\,\omega_L^2}I$$
 \implies Low field seeke

- Laguerre-Gauss beam
- Transverse confinement

P=1W, 10 μ m waist, λ =1 μ m ~ 15 MHz deep trap

 $\overrightarrow{F}(\omega)$

Ponderomotive potential

- Valence electron is almost free
- Positive ponderomotive energy

$$\mathcal{E}=rac{e^2}{2m_e arepsilon_0 c \, \omega_L^2} I \implies \text{Low field seeken}$$

- Laguerre-Gauss beam
- Transverse confinement

Crossed Gaussian beams

Longitudinal confinement

Tunable interatomic

distance

X

 λ =1µm, Δθ=12° Intersite spacing = 5 µm $\omega_{\perp} \sim \omega_{\parallel}/2 = 12 \text{ kHz}$ J ~ 17 kHz 1/4J ~ 15µs

 $\overrightarrow{F}(\omega)$ 1

Ponderomotive potential

- Valence electron is almost free
- Positive ponderomotive energy

$$\mathcal{E}=rac{e^2}{2m_earepsilon_0 c\,\omega_L^2}I$$
 \Longrightarrow Lo

Ponderomotive potential

- Valence electron is almost free
- Positive ponderomotive energy
- MHz-deep lattices

Photoionization?

- Detrimental for low-*l* levels lifetimes ~ few 10 µs
- Negligible for circular levels!
 cross-section ~ 10⁻¹⁷⁵ m²

 λ =1μm, Δ θ=12° Intersite spacing = 5 μm $\omega_{\perp} \sim \omega_{\parallel}/2 = 12 \text{ kHz}$ J ~ 17 kHz 1/4J ~ 15μs

Ponderomotive potential

- Valence electron is almost free
- Positive ponderomotive energy
- MHz-deep lattices
- No photoionization

Coherence?

 Potential almost independent of the circular Rydberg level

> Ground-state extension ~ 50 nm Electron-orbit radius ~ 250 nm

Potential is averaged over the orbit

• Estimated coherence time ~ 0.2 s

Radiative decay

- Unique decay channel $|nC\rangle \rightarrow |(n-1)C\rangle$
- Long natural lifetime ~ 30ms

... only 0.75ms for a 40-atom chain

Radiative decay

- Unique decay channel $|nC\rangle \rightarrow |(n-1)C\rangle$
- Long natural lifetime ~ 30ms

... only 0.75ms for a 40-atom spin chain

Inhibition of spontaneous emission

- Plane-parallel capacitor, $D \leq \lambda/2$
- Emission of σ^+ polarized photon is inhibited

D. Kleppner [PRL 55, 2137 (1985)]

Radiative decay

- Unique decay channel $|nC\rangle \rightarrow |(n-1)C\rangle$
- Long natural lifetime ~ 30ms
 - ... only 0.75ms for a 40-atom spin chain

Inhibition of spontaneous emission

Limitations of the lifetime

• Background gas collisions: 10⁻¹⁴ mbar required to reach 400s lifetime

Limitations of the lifetime

• Background gas collisions: 10⁻¹⁴ mbar required to reach 400s lifetime

Limitations of the lifetime

• Background gas collisions: 10⁻¹⁴ mbar required to reach 400s lifetime

 \Rightarrow accessible in a cryostat environment

Blackbody induced processes

- cryogenic temperature required: T ~ 0.5K
- Interaction-induced level mixing

Big enough electric and magnetic fields are required

Competition with the tuning of the interaction?

 $ICQSIM,\,15\,/\,11\,/\,2017$

Limitations of the lifetime

• Background gas collisions: 10⁻¹⁴ mbar required to reach 400s lifetime

 \Rightarrow accessible in a cryostat environment

Blackbody induced processes

- cryogenic temperature required: T ~ 0.5K
- Interaction-induced level mixing
 Big enough electric and magnetic fields are required
 Image: Second se

Summary

Cause	Lifetime (s)	
Residual spontaneous emission	2500	13mm square plates separated by 2mm
Blackbody induced processes	630	T ~ 0.5K
Level mixing	88	B > 9G / F >2V/cm
Photoionization	∞	
Collisions with background gas	400	$P \sim 10^{-14} mbar$
Compton elastic diffusion	> 180	P = 0.5W
Predicted lifetime	47	

Single atom lifetime ~ 50 s

with $J \sim 17 \text{ kHz}$ 1/4J $\sim 15 \mu \text{s}$

40-atom chain lifetime \geq 1 s

 \longrightarrow ~ 10⁵ interaction cycles!

Chain preparation

Deterministic chain evaporation

• Cloud of cold atoms, near quantum degeneracy

- Chain initialization: all atoms in the same spin state
- Flipping some atoms: atoms at the end of the chain (with single neighbour)

- Chain initialization: all atoms in the same spin state
- Flipping some atoms: atoms at the end of the chain (with single neighbour)

- Moving through the phase diagram:
 - Initial state in the ground state of the ferromagnetic phase
 - Adiabatic evolution: reconstruction of the phase diagram
 - Quenches: return to equilibrium, excitations...

• At the end of the sequence: freeze the spin dynamics

Negligible exchange interaction between |n = 50 > and |n = 46 >

 J_{46-50} is in the mHz-range

Measurement of spin observables

- State-selective field ionization
- \longrightarrow Measurement of σ^{z}
- Evaporation procedure is resumed
 - All atoms are detected one after the other
- Measurement of any spin component up to a global rotation of the spins
- Measurement of all spin correlations between every atoms

Reconstruction of the phase diagram

Numerical simulations G. Roux, LPTMS (Orsay)

- Spin populations and correlations reveal the phase transitions
- Limited finite-size effects already with N=40 atoms

ICQSIM, 15/11/2017

Summary

Simulation of a chain of interacting spins-1/2

Circular Rydberg atom quantum simulator

- Defect free chain of 40 spins
- Long chain lifetime (~ 1s) and strong nearest-neighbour interactions (~15µs)

Observation of 10⁵ interaction cycles

• Fully tunable XXZ Hamiltonian

T. L. Nguyen et al., arXiv:1707.04397

Summary

Simulation of a chain of interacting spins-1/2

Circular Rydberg atom quantum simulator

- Exploration of long-term dynamics: return to equilibrium after a quench, quantum thermodynamics
- Effects of disorder
- Coupling to a common bosonic bath (motion)
- High frequency modulation: Floquet engineering
- Extension to 2D-protocols (e.g., spin-1 physics)

T. L. Nguyen et al., arXiv:1707.04397

Thank you!

Permanent members:

Michel Brune Serge Haroche Jean-Michel Raimond

Igor Dotsenko Sébastien Gleyzes Clément Sayrin

Collaboration: Guillaume Roux LPTMS, Orsay

PhD students:

Frédéric Assemat Eva-Katharina Dietsche Dorian Grosso Arthur Larrouy Valentin Métillon Tigrane Cantat-Moltrecht Rodrigo Cortiñas Brice Ravon Thanh Long Nguyen (now in ETH Zurich)

Agence Nationale de la Recherche