Dual Bose-Fermi Superfluids

C. Salomon

ICQSIM, Paris, November 13-17, 2017
Y. Castin, F. Werner, X. Leyronas (ENS), S. Stringari (Trento), A. Recati, T. Ozawa, O. Goulko (Amherst), C. Lobo, J. Lau (Southampton), I. Danaila (Rouen)
The goals of quantum simulation

- Obtain results on a quantum system that cannot be reached by standard methods or numerical simulations
- Explore novel geometries, parameters, or configurations that are not available in the initial system
- Invent novel situations or devices based on the acquired knowledge

Cold atoms are good quantum simulators

Non-trivial questions:

- How to verify the simulation results?
- How to detect and correct errors?
106 years of quantum fluids

Bose Einstein condensate

4He

T~ 2.2 K

Superconductivity

High T_c

77 K

3He

2.5 mK

100 nK

BCS-BEC Crossover

dilute gas BEC

+ polaritons and BEC of light

Fermi gas superfluid
Outline

• Equation of state of fermions with tunable interaction

• Dual Bose-Fermi superfluid recipe

• The critical velocity for superfluid Bose-Fermi counterflow

• Lifetime of the Bose Fermi mixture: a simple formula!

3) Y. Castin, I. Ferrier-Barbut and C. Salomon

4) S. Laurent, M. Pierce, M. Delehaye, T. Yefsah, F. Chevy, C. Salomon

5) M. Abad, A. Recati, S. Stringari, F. Chevy, EPJD, 69, 2015

6) P-P. Crépin, X. Leyronas, F. Chevy, ArXiv:1607.00218
Searching for superfluid Bose-Fermi systems: $^4\text{He} - ^3\text{He}$ mixture

Volovik, Mineev, Khalatnikov, JETP, 42, 342 (1975): Fermi liquid theory of mixture

Expected $T_c \sim 1$ to $20 \mu K$?
^6Li and ^7Li isotopes

^6Li (fermion)

^7Li (boson)
Equation of State of Fermi gas in the BEC-BCS crossover

Pressure equation of state \[\frac{P}{P_0} = f\left(\frac{1}{k_F a}\right) \]

An example of quantum simulation in the strongly correlated regime

Bose-Fermi superfluidity recipe

Requirements:
- Low a_{bf} (no interspecies demixing)
- High $|a_f|$ (high fermionic superfluid T_c)
- Positive a_{bb} (stable BEC)

$^6\text{Li} - ^7\text{Li}$ mixture in the $|1\rangle_f$, $|2\rangle_f$ and $|2\rangle_b$

$a_{bf} = 40.8 \ a_0$
Unitary 6Li Fermi gas can cool any species fulfilling the requirements to BEC.
See also 6Li-41K, USTC, China, PRL ’16, and 6Li-173Yb, UWash, PRL’17.

Cool molecules to quantum regime?
Long-lived Oscillations of both Superfluids

Fermi Superfluid

\[\tilde{\omega}_6 = 2\pi \times 17.06(1) \text{Hz} \]
\[\tilde{\omega}_7 = 2\pi \times 15.40(1) \text{Hz} \]

Coupled Superfluids

Single Superfluid

Ratio = \((7/6)^{1/2} = (m_7/m_6)^{1/2}\)
Oscillations of both superfluids

Very small damping!
Modulation of the 7Li BEC amplitude by \sim30% at

$$\left(\tilde{\omega}_6 - \tilde{\omega}_7\right)/2\pi$$

Coherent energy exchange between the two oscillators
Dual Bose-Fermi superfluids with $^6\text{Li}-^7\text{Li}$ isotopes

Fermi Superfluid

Question 1: How to understand the oscillation frequencies?

Question 2: What is the critical velocity for superfluid counterflow?

Question 3: What is the lifetime of the Bose-Fermi mixture?

At unitarity, the lifetime is 7 seconds in shallow optical trap. How does it vary with $1/k_f a_f$, with a_{bf}, and with density?
1.5% down shift in 7Li BEC frequency

BEC osc. amplitude beat at frequency $(\tilde{\omega}_6 - \tilde{\omega}_7) / 2\pi$

Weak interaction regime: $k_F a_{bf} << 1$ and $N_7 << N_6$

Boson effective potential \[V_{eff} = V(r) + g_{bf} n_6(r) \quad \text{with} \quad g_{bf} = \frac{2\pi \hbar^2 a_{bf}}{m_{67}} \]

\[m_{67} = m_6 m_7 / (m_6 + m_7) \]

LDA \[n_6(r) = n_6^0 (\mu_6^0 - V(r)) \]

Where \[n_6(\mu) \] is the Eq. of State of the stationary Fermi gas.

For the small BEC: \[V(r) << \mu_6^0 \]

Expand \[n_6(r) \approx n_6^0 (\mu_6^0) - V(r) \frac{dn_6^0}{d\mu_6} + ... \]
Boson effective potential and link with Equation of State

Thomas Fermi radius of BEC<< TF radius of Fermi Superfluid:

\[V_{\text{eff}} = g_{bf} n_{6}(0) + V(r) \left[1 - g_{bf} \left(\frac{dn_{6}^{(0)}}{d \mu_{6}} \right)_{0} \right] \]

The potential remains harmonic with rescaled frequency

\[\tilde{\omega}_{7} = \omega_{7} \sqrt{1 - g_{bf} \left(\frac{dn^{(0)}}{d \mu_{6}} \right)_{0}} \]

A new means to access properties of the EoS!

The equation of state \(n(\mu) \) at low T is known in the BEC-BCS crossover N. Navon et al., Science, 2010

Example: at unitarity, \(1/a = 0 \)

From Thomas Fermi radius of \(^6\text{Li} \) superfluid, we find: \(\tilde{\omega}_{7} = 2\pi \times 15.43 \text{ Hz} \)

very close to the measured value:

\(\tilde{\omega}_{7} = 2\pi \times 15.40(1) \text{ Hz} \)
Equation of State and Bose-Fermi Coupling in BEC-BCS crossover

\[\frac{\delta \tilde{\omega}}{\omega} k_F a_{bf} \approx 6.190 \frac{a_{bf}}{a_f} \]

From EoS in the crossover
N. Navon et al, Science 2010

Shift in BEC limit

MIT '12

BCS

NIFG
What is the critical velocity for superfluid counterflow?

- Increase initial displacement
- Increase relative velocity
Critical velocity for superfluid counterflow

\[d = d_0 \exp(-\gamma t) + d' \]

\[\gamma = 3.1 \, s^{-1} \]

Time (ms)

Initial damping

\[V_c = 2 \, \text{cm/s} \]

is quite high!
Momentum Conservation: \[MV = MV' + \hbar \mathbf{k} \]

Energy Conservation: \[MV^2 / 2 = MV'^2 / 2 + \epsilon_k \]

\[\hbar k V \geq \hbar \mathbf{k} \cdot \mathbf{V} = \epsilon_k + \hbar^2 k^2 / 2M \geq \epsilon_k \]

Motion of impurity is damped by the creation of elementary excitations if:

\[V \geq V_c = \min_k \left(\frac{\epsilon_k}{\hbar k} \right) \]

For a linear excitation spectrum \(\epsilon_k = \hbar kc \), \(V_c = c \), the sound velocity.
Critical velocities
Landau criterion for a Bose-Fermi mixture @ T=0

Y. Castin, I. Ferrier-Barbut and C. Salomon

\[E_{B,k} = \varepsilon_{B,k} + \hbar k \cdot V_B \]

\[E_{F,k'} = \varepsilon_{F,k'} + \hbar k' \cdot V_F \]

Energy-momentum conservation:

\[E_{B,k} + E_{F,k'} = 0 \quad k + k' = 0 \]

\[|V_B - V_F| \geq \min_k \left(\frac{\varepsilon_{B,k} + \varepsilon_{F,-k}}{\hbar k} \right) \]

Sound Modes:

\[V_c = c_B + c_F \]

Counterflow critical velocity

\[\gamma(s^{-1}) \]

\[v_{\text{max}}/v_F \]

- \(c_B \)
- \(c_F \)
- \(c_B + c_F \)
Question 3:
What is the lifetime of the Bose-Fermi mixture?

Three-body recombination as a probe of quantum correlations in a strongly interacting system.
Three-body recombination in Bose-Fermi mixture

As a_{bf} is small, bosons act as a weakly coupled impurity immersed in a Fermi gas with large a_f

Three-body recombination: i, \downarrow, \uparrow

Decay to a deeply bound molecular state
Binding energy transferred to kinetic energy of collision partners
Atom and molecule leave the trap
A weakly coupled impurity in a resonant Fermi gas

Unitarity: ?

Unitary regime

Assuming a saturation

\[a \sim n_f^{-1/3} \]

We expect:

\[\Gamma_{if} \propto n_f^{4/3} \]

BEC Side

- "Two" body
- Dimer-impurity losses

\[\dot{n}_i = -L_{di} n_d n_i \]

\[L_{di} \propto 1 / a_f \]

JILA: Zirbel et al., PRL 100, 143201 (2008)

BCS Side

- Three body losses

\[\dot{n}_i = -L_{ff} n_i n_f^2 \]

\[L_{ff} \propto a_f^2 \]

D’incao and Esry, PRL 2008
Zirbel et al., PRL 2008
Spiegelhalder et al., PRL 2009
Khramov et al., PRA 2012
A weakly coupled impurity in a resonant Fermi gas

Kagan, Svistunov, Shlyapnikov, JETP, 1985

\[P(R < R^*) = \int_{R < R^*} d^3r_1 d^3r_2 d^3r_3 \left\langle \Psi_1^\dagger (r_1) \Psi_2^\dagger (r_2) \Psi_i^\dagger (r_3) \Psi_i (r_3) \Psi_2 (r_2) \Psi_1 (r_1) \right\rangle \]

Weak coupling between the impurity and the resonant fermions

\[P(R < R^*) = \int_{R < R^*} d^3r_1 d^3r_2 d^3r_3 \left\langle \Psi_1^\dagger (r_1) \Psi_2^\dagger (r_2) \Psi_2 (r_2) \Psi_1 (r_1) \right\rangle \left\langle \Psi_i^\dagger (r_3) \Psi_i (r_3) \right\rangle \]

\[g_{\uparrow \downarrow} (r_2, r_1) \sim \frac{1}{\Omega} \frac{C_2}{4\pi^2 |r_2 - r_1|^2} \]

With:

Therefore the impurity decay rate \(\Gamma_{if} \) should be proportional to Tan’s two-body contact \(C_2 \)
Tail of the momentum distribution at large k

$$k^4 n_\sigma(k) \rightarrow C_2 \quad \text{when } k \rightarrow \infty$$

JILA: Stewart et al., Jin’s group, PRL, 2010

Adiabatic energy relation

$$C_2 = -\frac{4\pi m_f}{\hbar^2} \frac{\partial E}{\partial (1/\alpha)}$$

at constant entropy

From equation of state measurements:

ENS, Navon et al., Science, 2010
Bose/Fermi decay and Tan’s Contact

\[\dot{n}_b = -\gamma C_2 n_b = -\Gamma_{bf} n_b \]

\[\gamma \propto a_{bf}^2 \]

is the only parameter that contains short range physics easily measured at high temperature on BEC side

\[\zeta = 0.87(3) \]

C. Vale, Swinburne
Bose/Fermi decay in strongly interacting regime

\[\dot{n}_b = -\gamma C_2 n_b = -\Gamma_{bf} n_b \]

\[\Gamma_{bf} \propto 1/a_{ff} \]

BEC + Fermi Superfluid

\[\Gamma_{bf} \propto n_f^{4/3} \]
Probing the local unitary Contact

\[R_{TF,b} = 0.3 R_{TF,f} \]

Prediction with no adjustable parameter

\[\Gamma_{bf} = \gamma C_2 = \frac{2 \zeta}{5 \pi} \left(3 \pi^2 n_f^{4/3} \right) \times 0.9 \]

Average over BEC TF profile
Probing the local unitary Contact

Power law fit: $A n^p$ gives $p = 1.36 (15)$ close to $4/3$

Fit: $A n^{4/3}$ gives A and local contact $C_2(0)$

Impurity decay is a local probe of quantum correlations in a many-body system
Summary

• Dual Bose-Fermi superfluids have intriguing novel properties

• Lifetime of Bose-Fermi mixture is governed by Tan’s contact

• Theory applies to Yb6Li, K6Li, Rb40K, ….. assumes small a_{bf}

• What happens when a_{bf} increases ? Efimov effect

• Measure three-body contact of Fermi gas

• Two-body and three-body contact in unitary Bose gas

R. Fletcher et al., Science 2017, Cambridge
Link with lifetime measured at JILA

C. E. Klauss et al., ArXiv 1704.01206