Spectral signatures of Many-body localization with interaction photons

Pedram Roushan Google Inc. Paris, Nov 2017

Simulating condensed matter systems

Let nature calculate for us !

Bloch, Nature Physics (2005)

Ultra-cold atoms Spin qubits

Toyli, et al., Nano Lett. 2010

Trapped ions

Monroe, et al., Science 2013

Superconducting qubits

E. Lucero, Google Inc. (2014)

What can be done with small number of qubits ?

David Huse, Princeton university

"...once you can go over 20 q-bits, you are exploring stuff that "we have no other way of exploring now."

quantum stat. mech. cond. matt. physics (even) string theory

Chetan Nayak, Microsoft station-Q

"...small quantum computers - on the order of 100 qubits will be useful in the solution of scientific problems." quantum chemistry High-T_C

Anatoli Polkovnikov, Boston university

" If you go to 20 you reach the maximum one can do with exact diagonalization ..., if you have more, you are beyond theory." thermalization many body localization controlled disorder

Enrique Solano, U. of the Basque Country

"...with something like 10-20 qubits coupled to 5-10 cavity modes, we will be able to produce nontrivial quantum simulations."

Unphysical operations quantum field theories fluid mechanics

Superconducting Qubits: Weakly non-linear Harmonic oscillators

Experimental setup: *fridge and wiring*

500µW at 100mK

Base temperature ~10mK

Experimental setup: fridge and wiring

Base temperature ~10mK

 $H_{BH} = \sum^{Qubits} \mu_n a_n^{\dagger} a_n + \frac{U}{2} \sum^{Qubits} a_n^{\dagger} a_n (a_n^{\dagger} a_n - 1) + J \sum^{Couplers} a_{n+1}^{\dagger} a_n + a_n^{\dagger} a_{n+1}$

The gmon (Jmon) architecture

Absence of thermalization in interacting systems?

Fundamental assumption of statistical mechanics: All micro-states associated with a given macro-states have equal probability.

Ergodic hypothesis: System explores all accessible micro-states over time.

Break down of ergodicity

Recent studies of many-body localization

0.4

-10

U/J

- [1] D.M. Basko, I.L. Aleiner, and B.L. Altshuler, "Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states," Annals of Physics 321, 1126–1205 (2006).
- [2] R. Nandkishore and D. A. Huse, "Many-body localization and thermalization in quantum statistical mechanics," Annual Review of Condensed Matter Physics 6, 15–38 (2015).
- [3] E. Altman and R. Vosk, "Universal dynamics and renormalization in many-body-localized systems," Annual Review of Condensed Matter

Many-body localized **Thermal** (Ergodic) Level statistics: Distribution of energy levels Spatial extend of eigen-energies **Two-point correlations**

Control parameter

- [15] John Z. Imbrie, "Diagonalization and many-body localization for a disordered quantum spin chain," Phys. Rev. Lett. 117, 027201 (2016). [16] F. Iemini, A. Russomanno, D. Rossini, A. Scardicchio, and R. Fazio,
 - "Signatures of many-body localization in the dynamics of two-site entanglement," Phys. Rev. B 94, 214206 (2016).

An optical micrograph of the 9-qubit chip.

Two coupled qubits

1D chain of 9 qubits

Time-domain spectroscopy-I

$$|\psi(t)
angle = \sum_{lpha} C_{lpha} e^{-iE_{lpha}t/\hbar} |\phi_{lpha}
angle \qquad$$
, where $\hat{H} |\phi_{lpha}
angle = E_{lpha} |\phi_{lpha}
angle$

$$H = \sum_{n=1}^{9} \mu_n a_n^{\dagger} a_n + J \sum_{n=1}^{8} a_{n+1}^{\dagger} a_n + a_n^{\dagger} a_{n+1}$$

Roushan *et al.*, Science (2017)

Time-domain spectroscopy-II

Roushan et al., Science (2017)

Time-domain spectroscopy-II

Time-domain spectroscopy-III

In our method:

$$|\psi(t)\rangle = \sum_{\alpha} C_{\alpha} e^{-iE_{\alpha}t} |\phi_{\alpha}\rangle$$

We measure observables:

$$\hat{O} = \sum_{\alpha,\alpha'} O_{\alpha',\alpha} |\phi_{\alpha'}\rangle \langle \phi_{\alpha}|_{c}$$

, where

$$O_{\alpha',\alpha} = \langle \phi_{\alpha'} | \hat{O} | \phi_{\alpha} \rangle$$

Which becomes

$$O(t) = \langle \psi(t) | \hat{O} | \psi(t) \rangle = \sum_{\alpha, \alpha'} O_{\alpha', \alpha} C_{\alpha} C_{\alpha'}^* e^{-i(E_{\alpha} - E_{\alpha'})t}$$

operators Initial states	$\langle a_1^{\dagger}a_1 angle$	$\langle a_1 \rangle$
$ \psi_0 angle = 10 angle$	$\frac{1}{2} \left[1 + \cos((E_+ - E)t) \right]$	0 X
$ \psi_0\rangle = \frac{ 00\rangle + 10\rangle}{\sqrt{2}}$	$\frac{1}{4} \left[3 + \cos((E_+ - E)t) \right]$	$\frac{1}{4} \left(e^{-iE_+t} + e^{-iEt} \right)$

Hofstadter Butterfly

$$H_{\text{Harper}} = \Delta \sum_{n=1}^{9} \cos(2\pi nb) a_n^{\dagger} a_n + J \sum_{n=1}^{8} a_{n+1}^{\dagger} a_n + a_n^{\dagger} a_{n+1}$$

9 qubit Hofstadter Butterfly

Systematic (calibration) error

Two photons: interacting systems

Energy level statistics

V. Oganesyan and D. Huse, PRB (2007) Y.Y. Atas *et al.*, PRL (2013) O. Bohigas *et al.*, PRL (1984)

Energy level statistics

We are interested in:

$$|\phi_{\alpha}\rangle = \sum_{n} C_{\alpha,n} |\mathbf{1}_{n}\rangle$$

Our method:

$$|\psi(t)\rangle = \sum C_{\alpha} e^{-iE_{\alpha}t/\hbar} |\phi_{\alpha}\rangle$$

At time=0:

$$|\psi_0
angle = \sum_lpha C_lpha |\phi_lpha
angle$$

 α

Fock state as initial state:

$$ert \mathbf{1}_n
angle = \sum_lpha C_{n,lpha} ert \phi_lpha
angle
onumber P_{lpha,n} = ert C_{lpha,n} ert^2$$

Number of sites that an energy eigenstate is extended over.

$$PR_{\rm Energy}(n) \equiv 1/\sum P_{\alpha,n}^2$$

 $PR_{\text{Space}}(\alpha) \equiv 1/\sum P_{\alpha,n}^2$

Number of energy eigenstates present in a lattice site.

Participation ratio

Quantum correlations

Good C quantum team

Los Angele theory team:

V. Bastidas

J. Tangpanitanon

D. Angelakis

Centre for Quantum Technologies

2-qubit gmon (2013-2014)

3-qubit gmon (2014-2015)

9-qubit gmon (2015-2016)

15-qubit gmon (2017)

1D chain of 15-qubits

Research Engagement

- 1) Support external grants
- 2) Focus Awards (research grants)
- 3) Quantum computing access
- 4) Faculty Awards
- 5) Visiting Faculty
- 6) Interns
- 7) Residency
- 8) PhD Fellowships
- 9) Consultants, visiting academic

Google quantum lab