Open quantum systems in Circuit-QED: Monitoring the bath

Javier Puertas Martínez Néel Institute, Grenoble (France)

Superconducting quantum circuits team

Permanents Olivier Buisson Wiebke Guichard Cécile Naud Nicolas Roch Non Permanents Javier Puertas Martínez Rémy Dassonneville Sébastien Leger Farshad Foroughi

Luca Planat

ICQSIM Paris 2017

Theoretical support Serge Florens (NEEL) Nicolas Gheereart (NEEL) Izak Snyman (MITP)

Quantum system coupled to an environment

 $FSR = \omega_n - \omega_{n-1}$

(Free Spectral Range)

Quantum system coupled to an environment

 $FSR = \omega_n - \omega_{n-1}$

(Free Spectral Range)

Non-trivial many-body system if

 ω_{10}

- The environment has many degrees of freedom
- System ultra-strongly coupled to the environment
- System fully hybridized with the environment

 $\Gamma \sim \omega_{10}$ $\Gamma \sim \text{FSR}$

Example: atom in a cavity

Example: atom in a cavity

Example: atom in a large cavity

Several modes but $\ 2g \ll {
m FSR}$ $g \ll \omega_{10}$

Two-level system coupled to one photonic mode at once

FSR FSR

Magnetic flux

16/11/17

ICQSIM Paris 2017

Example: atom in a large cavity

Several modes coupled $~2g \sim {
m FSR}$

At every point the system is entangled

Ultrastrong coupling

with several modes

$$g/\omega_{10} \sim 1$$

Transition frequency

Magnetic flux

16/11/17

ICQSIM Paris 2617

FSR

How to get there?

A. Wallraff et al (2004)

Circuit QED: Superconducting circuits and microwave photons.

Circuits allow large system-environment coupling

- Strong coupling:
- Ultra-strong coupling: T. Niemczyk et al (2010)
- Many-body ultra-strong coupling: P. Forn-Diaz et al (2017)

How to get there?

Circuit QED: Superconducting circuits and microwave photons.

Circuits allow large system-environment coupling

- Strong coupling: A. Wallraff et al (2004)
 Ultra-strong coupling: T. Niemczyk et al (2010)
- Many-body ultra-strong coupling: P. Forn-Diaz et al (2017)

but also:

In situ tunability of the environment Monitoring of the environment Fully microscopic model from lumped elements

Outline

System-environment coupling in circuit QED

Tunable high impedance environment

Transmon qubit coupled to a JJ metamaterial

Monitoring the environment

Coupling between the system and the environment

Our system is a transmon qubit

 $\Gamma \sim \omega_{10}$

Coupling between the system and the environment

Our system is a transmon qubit

Tunable high impedance environment

Standard transmission line

$$Z_0 = \sqrt{L/C_{\rm g}} = 50\,\Omega$$

Environment as an infinite number of harmonic oscillators

Tunable high impedance environment

Standard transmission line

$$Z_0 = \sqrt{L/C_{\rm g}} = 50\,\Omega$$

Environment as an infinite number of harmonic oscillators

Array of N SQUIDs

$$Z_{0}\left(\Phi\right) = \sqrt{L_{J}\left(\Phi\right)/C_{g}} \sim \mathbf{k}\Omega$$

In situ tunable environment Great control on the environment parameters during fabrication.

Seminal work:S. Corlevi et al (2006)See also:N. Masluk et al (2012)

Bell et al (2012)

C. Altimiras et al (2013)

Fabrication of the environment

Fabricating the environment: thousands of identical SQUIDs

Fabricated using the BFF technique F. Lecocq et al (2011)

- No shadow pattern
- Allows cleaning of the substrate before evaporation

Fabrication of the environment

Fabricating the environment: thousands of identical SQUIDs

 $\begin{array}{ll} \text{Mean} & \mu = 1200\,\Omega \\ \text{Deviation} & \sigma = 25\,\Omega \end{array}$

Very low disorder, around 2%

Fabricated using the BFF technique F. Lecocq et al (2011)

Fabrication of the environment

Fabry-Pérot cavity

Fabry-Pérot cavity

Free Spectral Range

FSR = 300 MHz

Impedance mismatch Internal losses $Q_{\rm int} = 10^4$ $Q_{\rm ext} = 10^2$

Fabry-Pérot cavity

ICQSIM Paris 2017

N = 5400 SQUIDs

Tunable impedance $Z_{
m c}(\Phi)$ =

$$= \sqrt{\frac{L_{\rm J}(\Phi)}{C_{\rm g}}}$$

ICQSIM Paris 2017

N = 5400 SQUIDs

Asymmetric SQUIDs :

Low Free Spectral Range at high impedance

 $\mathrm{FSR}\simeq 150\,\mathrm{MHz}$

Asymmetric junctions

ICQSIM Paris 2017

ICQSIM Paris 2017

16/11/17

ICQSIM Paris 2017

16/11/17

ICQSIM Paris 2017

30

 $E_{\text{qubit},n}(\text{GHz})$

ICQSIM Paris 2017

$$\Delta \theta = \frac{E_{\text{bare, n}} - E_{\text{qubit, n}}}{E_{\text{bare, n + 1}} - E_{\text{bare, n}}}$$

The transmon phase shift

$$\Delta \theta = \frac{E_{\text{bare, n}} - E_{\text{qubit, n}}}{E_{\text{bare, n + 1}} - E_{\text{bare, n}}}$$

ICQSIM Paris 2017

The transmon phase shift

$$\Delta \theta = \frac{E_{\text{bare, n}} - E_{\text{qubit, n}}}{E_{\text{bare, n + 1}} - E_{\text{bare, n}}}$$

ICQSIM Paris 2017

$$\Delta \theta = \frac{E_{\text{bare, n}} - E_{\text{qubit, n}}}{E_{\text{bare, n + 1}} - E_{\text{bare, n}}}$$

$$\Delta \theta = \frac{E_{\text{bare, n}} - E_{\text{qubit, n}}}{E_{\text{bare, n + 1}} - E_{\text{bare, n}}}$$

The transmon phase shift

$$\Delta \theta = \frac{E_{\text{bare, n}} - E_{\text{qubit, n}}}{E_{\text{bare, n + 1}} - E_{\text{bare, n}}}$$

ICQSIM Paris 2017

The transmon phase shift

$$\Delta \theta = \frac{E_{\text{bare, n}} - E_{\text{qubit, n}}}{E_{\text{bare, n + 1}} - E_{\text{bare, n}}}$$

ICQSIM Paris 2017

$$\Delta \theta = \frac{E_{\text{bare, n}} - E_{\text{qubit, n}}}{E_{\text{bare, n + 1}} - E_{\text{bare, n}}}$$

$$\Delta \theta = \frac{E_{\text{bare, n}} - E_{\text{qubit, n}}}{E_{\text{bare, n + 1}} - E_{\text{bare, n}}}$$

$$\Delta \theta = \frac{E_{\text{bare, n}} - E_{\text{qubit, n}}}{E_{\text{bare, n + 1}} - E_{\text{bare, n}}}$$

$$\Delta \theta = \frac{E_{\text{bare, n}} - E_{\text{qubit, n}}}{E_{\text{bare, n + 1}} - E_{\text{bare, n}}}$$

$$\Delta \theta = \frac{E_{\text{bare, n}} - E_{\text{qubit, n}}}{E_{\text{bare, n + 1}} - E_{\text{bare, n}}}$$

$$\Delta \theta = \frac{E_{\text{bare, n}} - E_{\text{qubit, n}}}{E_{\text{bare, n + 1}} - E_{\text{bare, n}}}$$

$$\Delta \theta = \frac{E_{\text{bare, n}} - E_{\text{qubit, n}}}{E_{\text{bare, n + 1}} - E_{\text{bare, n}}}$$

$$\Delta \theta = \frac{E_{\text{bare, n}} - E_{\text{qubit, n}}}{E_{\text{bare, n + 1}} - E_{\text{bare, n}}}$$

We need a theory to fit this data

$$\Delta \theta = \frac{E_{\text{bare, n}} - E_{\text{qubit, n}}}{E_{\text{bare, n + 1}} - E_{\text{bare, n}}}$$

System

Array of 4700 SQUIDs = 4700 modes

$$\vec{n} = |n_1, n_2, \dots, n_{N-1}, n_N\rangle$$

Transmon levels

$$|t\rangle$$

Huge Hilbert space!

Brute force diagonalization is impossible

Different approach

System

Array of 4700 SQUIDs = 4700 modes

$$\vec{n} = |n_1, n_2, \dots, n_{N-1}, n_N\rangle$$

Transmon levels

 $|t\rangle$

Huge Hilbert space!

Brute force diagonalization is impossible

Different approach

Theoretical assumptions

- Lumped element model with the chain assumed linear

 $E_{J,\text{chain}}/E_{C,\text{chain}} \simeq 8000$

- Non-linearity of the transmon treated using the Self Consistent Harmonic Approximation.
- Thermodynamic limit, we assume that the chain is semi infinite

 $N \to \infty$

Analytically solvable

The transmon phase shift

$$\varphi_n \propto \cos \left[\kappa_n x - \phi \left(E_{J,\mathrm{T}} = 0\right)\right]$$

 ${\mathcal X}$

The transmon phase shift

16/11/17

ICQSIM Paris 2017

The transmon phase shift

 $\Delta \theta = \left[\phi \left(E_{J,T} = 0\right) - \phi \left(E_{J,T} \neq 0\right)\right] / \pi$ $N \to \infty$

The transmon phase shift

$$\Delta \theta = \left[\phi \left(E_{J,T} = 0\right) - \phi \left(E_{J,T} \neq 0\right)\right] / \pi$$
$$N \to \infty$$

$$\begin{split} \omega_{n} &\simeq \omega_{T} \\ \Delta \theta &\sim 0.5 \end{split}$$

$$\begin{split} \omega_{n} &< \omega_{T} \\ \Delta\theta &\sim 0 \end{split}$$

ICQSIM Paris 2017

 \mathcal{X}

$\Delta \theta = [\phi \left(E_{J,\mathrm{T}} = 0 \right)]$	$-\phi\left(E_{J,\mathrm{T}}\neq0\right)]/\pi$
$N o \infty$	

ICQSIM Paris 2017

$\Delta \theta = [\phi (E_{J,\mathrm{T}} = 0)]$	$\phi(E_{J,\mathrm{T}}\neq 0)]/\pi$
$N o \infty$	

ICQSIM Paris 2017

$$\Delta \theta = \left[\phi \left(E_{J,T} = 0\right) - \phi \left(E_{J,T} \neq 0\right)\right] / \pi$$
$$N \to \infty$$

The transmon phase shift

$$\Delta \theta = \frac{E_{\text{bare, n}} - E_{\text{qubit, n}}}{E_{\text{bare, n}+1} - E_{\text{bare, n}}}$$

Good data theory agreement with no fitting parameter

Mesoscopic environment effectively infinite

Up to 10 hybridized modes!

Probe frequency (GHz)

5.5

2.5

Probe frequency (GHz)

2.5

ICQSIM Paris 2017

ICQSIM Paris 2017

ICQSIM Paris 2017

ICQSIM Paris 2017

ICQSIM Paris 2017

Conclusions

0.8

0.6

0.4

Transmon coupled to a mesoscopic tunable environment

- Mesoscopic environment effectively infinite
- Up to 10 modes coupled to the system
- Ultra-strong coupling and many-body system

- Good data theory agreement with no fitting parameter

ICQSIM Paris 2017

Thanks for your attention

Monitoring the environment

System hybridization

At every point the transmon width Is of the same order that the FSR

$$\frac{\Gamma_{\rm T}}{\rm FSR} = 0.96 \pm 0.7$$