EHzürich

F. A. Y. N. Schröder, C. Creatore and A. W. Chin *Cambridge University, U.K.*

S. A. Khan and H. E. Türeci *Princeton University, US.*

Studying the Functional Quantum Biology of Light-Harvesting Processes with Superconducting Circuits

<u>A. Potočnik</u>, A. Bargerbos, M. C. Collodo, S. Gasparinetti, Y. Salathé, C. Eichler and A. Wallraff *Quantum Device Lab, ETH Zürich, Switzerland*

Quantum Effects in Light Harvesting

- Do quantum phenomena play an important functional role in biological systems?
- Photosynthetic complexes could harvest the available light with high efficiency (95%).
 Caruso, F. et al. J. Chem. Phys. 131, 10 (2009).
- Experimental observations of long lasting coherences in Fenna-Matthews-Olson (FMO) pigment protein complex Review: Scholes, et al., *Nat. Chem.* 3, 763 (2011).

Noise Assisted Transport

Experimental Implementation

- Quantum two-level systems
- Delocalized excited states
- Bright/Dark states
- Control of energy level configuration
- Control over the environment

Superconducting circuits

Experimental Implementation

Haken-Strobl-Reineker model:¹

Potocnik et al. arxiv:1710.07466.

$$\mathcal{H} = \frac{1}{2} \sum_{j=1}^{N} [\epsilon_j + \delta \epsilon_j(t)] \sigma_j^z + \frac{1}{2} \sum_{i< j}^{N} J_{ij} \left(\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^y \right)$$

ICQSIM | 14.11.2017 | 5

¹Haken, H. and Reineker, P. Z. Phys **249**, 253 (1972). Haken, H. and Strobl, G. Z. Phys **262**, 135 (1973).

Spectroscopy and Energy Level Diagram

Coupling Rates:

 $J_{12}/2\pi = 86.7 \text{ MHz}$ $J_{d3}/2\pi = 18.5 \text{ MHz}$ **Relaxation Rates:**

- $\gamma_{\rm b}/2\pi = 12.4 \,\rm MHz$
- $\gamma_{\rm d}/2\pi = 0.3 \,\rm MHz$
- $\gamma_{\rm Pur}/2\pi \approx 23 \,\rm MHz$

Experimental Scheme

- Drive Q_{1,2} through wave guide coherently/incoherently with adjustable BW/power
- Apply low frequency noise to Q₂ with adjustable BW/power through flux line
- Detect emission power spectrum at resonator and transmission line

EHzürich

Coherent Excitation and White Noise Environment

Experimental data: Lindblad Master equation simulation: 6.4 $v_{d1} v_{d2}$ b 1.0 .0 ---- S₂ (Photons s⁻¹ Hz⁻¹) а −S₄ Φ_W^2 (Photons s⁻¹Hz⁻¹) (pWb²) $-S_4 - S_2 \Phi_w^2$ (pWb² 8.05 8 05 0.8 0.86.3 $|\mathbf{q}_{2}|$ 1.75 1.75 0.6 0.6 Frequency, v (GHz) $|d_2\rangle$ 0.89 0.89 0.4 $|q_3\rangle$ 0.4 $|d\rangle$ 6.2 S 0.2 S 0.2 0.10 0.10 $|d_1\rangle$ 0.0 0.0 0.06.1 $\Omega_{\mathsf{RI}}^{\mathsf{I}}$ γ_{Pur} 6.15 6.20 6.25 6.30 6.35 6.40 $\gamma_{\rm b}$ 6.15 6.20 6.25 6.30 6.35 6.40 Frequency, v (GHz) Frequency, v (GHz) 6.0

- Noise assisted energy conversion and excitation transfer
- Bright and dark states are broaden due to added noise
- Crossover from strong coupling to weak coupling regime
- Only Q₃ mode visible in the weak coupling regime
- Excellent agreement with master equation simulations | 14.11.2017 | 8

Potocnik et al. arxiv:1710.07466.

0

Efficiency: Coherent Excitation/White Noise

Spectra:

 $|D\rangle$

O3

 γ_{Pur}

Integrated powers:

- Incoherent population transfer
- Maximum in transfer efficiency

Structured noise

Apply low frequency noise to Q₂ with adjustable BW/power through flux line

Coherent Excitation and Colored Noise Environment

- Transfer only when noise spectrum matches b to d_{1,2} transition
- Enhanced efficiency compared to white noise

Incoherent Excitation and White Noise Environment

Measured power spectra:

Master equation simulation:

- finite power in S₄ without added environmental noise
- Incoherent excitation modeled in master equation simulation as finite temperature $n_{\rm th} = 0.19$
- coherent coupling (doublet) persists in incoherent excitation

Conclusions

- Demonstrated bio-inspired noise assisted excitation transfer in superconducting model system
- Non-Markovian (resonant) environment observed to increase transfer efficiency
- Superconducting circuits are ideal for studying quantum effects in biological systems

Outlook

- Transient dynamics (2D spectroscopy)
- Explore quantum environments
- Model up to 8 qubits to investigate FMO complex

The Quantum Device Lab

incl. undergrad and summer students

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

SWISS NATIONAL SCIENCE FOUNDATION

