# Studying absorbing-state phase transitions in a cold Rydberg gas

#### Oliver Morsch INO-CNR and Dipartimento di Fisica, Pisa, Italy

ICQSIM, Paris, 15/11/2017



C. Simonelli, M. Archimi, E. Arimondo, D. Ciampini *Collaboration:* R. Gutierrez, M. Marcuzzi, I. Lesanovsky **Funding:** FET-RYSQ



#### Outline

- (Directed) percolation and absorbing state phase transitions
- The basic processes with Rydberg atoms
- Experimental results
- Outlook

#### Percolation



link probability  $p > p_{crit} \Rightarrow system ~ercolates$ 

#### «Directed» percolation



#### «Directed» percolation



Non-equilibrium phase transition Examples: wildfires, turbulence,

spreading of infectious diseases

### «Infection model» exhibits absorbing state phase transition

«absorbing state»



### Basic processes leading to an absorbing state phase transition



# Rydberg atoms are long-lived and interact strongly





Ex.: Rb n=70, ~ MHz at 10  $\mu$ m lifetime around 150  $\mu$ s





<sup>87</sup>Rb atoms in a MOT
T ~ 150 micro Kelvin («frozen gas»)
N ~ few 10<sup>5</sup>
size around 150 microns







#### Many-body dynamics takes place...





#### Many-body dynamics takes place...





effective 1D dynamics

... then the system is probed using field ionization





#### ... then the system is probed using field ionization





#### ... then the system is probed using field ionization











#### Facilitation dynamics = «offspring production»



### Facilitation dynamics = «offspring production»



facilitated excitation



### Facilitation dynamics needs to be seeded



(see also work by R. Löw (Stuttgart))

C. Simonelli et al., J. Phys. B 49, 154002 (2016)

# Facilitation and decay realize the basic processes for absorbing state phase transition



Absorbing state phase transition probed by varying the driving (facilitation) strength





system is initially seeded

Absorbing state phase transition probed by varying the driving (facilitation) strength



Absorbing state phase transition probed by varying the driving (facilitation) strength



### A crossover between absorbing and active states is observed



New J. Phys. **17**, 072003 (2015)

Phys. Rev. A 96, 043411

### The critical point is signalled by a peak in the fluctuations



#### Outlook: towards quantum percolation



### Percolation classical



### Outlook: towards quantum percolation



YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub> (.3) lattice



#### quantum

### Percolation

