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Multicomponent 1D fermions with repulsive 
interactions: a new system for studying....

✔ Effects of strong interactions and correlations

✔ Universality 

✔ Beyond-Luttinger-liquid phenomena

✔ Magnetic phases : analog of antiferromagnetism, itinerant 
ferromagnetism



  

Plan

1D multicomponent fermions with repulsive interactions :

          Exact solution at infinite interactions

          Numerical results at arbitrary interactions

– Symmetry characterization of the wavefunction 

– Density profiles

– Momentum distribution 

   and Tan’s contact



  

1D two-component Fermi gases

with repulsive intercomponent interactions ; 
like electrons with spin 1/2

Tuning the interactions : possibility to reach 
strongly correlated regime

Fermionizing the fermions: 

strong repulsive interactions →  effective Pauli 
principle between fermions belonging to different 
components → ‘Tonks-Girardeau regime’ 

[Zurn et al, Phys Rev Lett 108, 070503 
(2012)]

at increasing interactions….



  

1D multi-component Fermi gases

173Yb Experiments with up to r=6 components 

Tight confinement – 1D regime

Presence of a longitudinal harmonic 
confinement

Repulsive interactions : g>0

[Pagano et al Nat Phys (2014)]

In the limit of strongly repulsive interactions : generalized 
fermionization : interactions forbid double occupancy of 
energy levels 

Generalization of Girardeau’s solutions for g → infinity



  

Exact solutions in the fermionized regime (I)

Difficulty : for a r-component Fermi gas,  large 
degeneracy of the ground state : 

as for multicomponent BF mixtures [Girardeau, 
Minguzzi, PRL (2007)] 

Strategy : Mapping onto an ideal Fermi gas 
with N=N

1
+N

2
+...N

r  
 fermions

– the ideal-Fermi gas wavefunction has the 
right nodes : we take  [Volosniev et al] [Volosniev et al Nat Phys (2015)]

– one needs to fix the phase of the 
wavefunction when exchanging two fermions 
belonging to different components : origin of 
the degeneracy 

– when exchanging two 
fermions belonging to the 
same component, the 
wavefunction takes a minus 
sign : 

indicator of a 
coordinate sector

ideal Fermi gas 
wavefunction

coefficient to 
be determined



  

Exact solution in the fermionized regime (II)

Generalization of Girardeau’s wavefunction for impenetrable bosons [Volosniev et al]

The ground state wavefunction is the one which has the largest slope at decreasing 
interactions – related to the Tan’s contact

→ the coefficients        are determined by maximizing 

indicator of a 
coordinate 
sector

ideal Fermi gas 
wavefunctioncoefficients to 

be determined



  

I – Symmetry 



  

The Lieb and Mattis theorem

Two component fermions (electrons) : the ground state has the smallest possible spin 
compatible with the fermion imbalance 

Example with two fermions :

The spin part has S=0 and is antisymmetric. The spatial part is symmetric. (→ The total 
wavefunction is antisymmetric)

Absence of ferromagnetism for any finite interactions

see also [Barth and Zerger Ann. Phys. 326, 2544, 2011]



  

Magnetic structure for systems  with more than two 
spin components :

  – How to characterize it ?

  – How to observe it ? 

→  not an ensemble of spin ½ particles, 
      each component corresponds to a ‘color’

Questions :

 



  

Symmetry characterization for multicomponent gases

The Young tableaux indicate the symmetry under exchange of particles 
belonging to each component 

Examples for 6 fermions :

Fully antisymmetric
spatial wavefunction 

Fully symmetric
spatial wavefunction 

Intermediate symmetry : antisymmetric 
wrt columns and symmetric wrt rows



  

How to associate Young tableaux to wavefunctions

Use the class-sum operators [Katriel, J. Phys. A, 26, 135 (1993] 

line of Young tableau

cyclic permutation 
of k elements

number of boxes 
in the Young tableau 

For the transposition class           its eigenvalue         allows to link to the 
Young tableau according to

[J. Decamp et al, NJP 18, 055011 (2016)]



  

symmetry

Symmetry of the wavefunctions : results

[J. Decamp et al, NJP 18, 055011 (2016)]

Take total N=6 fermions, various combinations among the components 

The ground state spatial wavefunction has a single Young tableau → a 
definite symmetry

       is the Young tableau with eigenvalue    of 
the transposition class-sum operator  

The ground-state configuration is the most symmetric one compatible with 
imbalance :    Generalization of the Lieb-Mattis theorem to multicomponent Fermi gases



  

Total interaction parameter and symmetry

 N=6 fermions, slope of the energy curves

Symmetry spectroscopy : a unique value for K for a given symmetry

[Decamp et al, PRA 94, 053614 (2016)]



  

II – Density profiles 



  

Density profiles and symmetry for a strongly 
correlated Fermi gas : ground and excited states

[J. Decamp et al, NJP 18, 055011 (2016)]

 N=6 fermions, symmetric mixtures  1+1+1+1+1+1, 2+2+2, 3+3

The density profiles depend on the symmetry of the mixture

 noninteracting profiles

The higher excited states are less and less symmetric than the 
ground state : highest excited state – ‘ferromagnetic’



  

Density profiles and symmetry for a strongly 
correlated Fermi gas : ground and excited states
 N=6 fermions, imbalanced mixtures  5+1

Repulsive interactions :   
hole in the majority distribution,
polaron

The excited state is fully antiymmetric : 
the density profile coincides with the one 
of a noninteracting Fermi gas with N=6



  

Density profiles and symmetry for a strongly 
correlated Fermi gas : ground and excited states
 N=6 fermions, imbalanced mixtures  5+1, 4+2

Alternance of the two components: 
antiferromagnet



  

Density profiles and symmetry for a strongly 
correlated Fermi gas : ground and excited states

[J. Decamp et al, NJP 18, 055011 (2016)]

 N=6 fermions, imbalanced mixtures  5+1, 4+2, 3+2+1

Link between symmetry and spatial shape



  

How strong the interactions should be to see 
correlation effects?

Analysis at finite interactions, N= 3+2+1

Solid lines : DMRG

Dashes : exact solution

g=0

g=1

g=10

g=100

(g in harmonic oscillator units)

Solid lines : DMRG [Matteo Rizzi, 
Johannes Juenemann]



  

How strong the interactions should be to see 
correlation effects?

Analysis at finite interactions, N= 3+2+1

Solid lines : DMRG

Dashes : exact solution

g=0

g=1

g=10

g=100

(g in harmonic oscillator units)



  

 III –  Momentum distributions 



  

Momentum distributions for multicomponent fermions

Accurately measured in experiments 

Effect of confinement ?

Effect of interactions ?

Effect of number of components ?

Effects of temperature ?

 

[Pagano et al Nat Phys (2014)]



  

Momentum distributions for multicomponent fermions

Definition 

Density in momentum space, Fourier transform of the one body density matrix

Momentum distribution for the fermionic component     :

where

and the first coordinate belongs to the component

Valid for arbitrary interactions and external confinement



  

Momentum distribution of a Fermi gas

Basic facts  – homogeneous system results

Noninteracting fermions, homogeneous 
system : a sharp Fermi edge at k=kF

Multicomponent interacting 1D fermions, 
homogeneous system : 

– a power-law discontinuity at k=kF from Luttinger 
liquid / conformal field theory  [Frahm,  et al (1993)]

– large momentum tails with universal power law 
(beyond Luttinger-liquid theory)  [Barth et al (2011)]

Tails : effect of interactions



  

Large-momentum tails of the momentum distribution

                            Power-law tails : due to the behaviour of 
the many-body wavefunction at short distances, fixed by 
the contact interactions

The weight of the tails (Tan’s contact) is 
related to the two-body correlation function 

Tan’s relations : also related to the interaction 
energy of the specie     with all the other species

Can be obtained from the ground state energy 
using the Hellmann-Feynman theorem  



  

Large-momentum tails for a homogeneous gas

                            The tails increase with interaction strength

Weight of the momentum distribution tails

Two-body correlation function

For a two-component Fermi gas, from the Bethe 
Ansatz equation of state : 

For a Bose gas, from 
Bethe Ansatz : 

[J.S. Caux, P. Calabrese, N.A. Slavnov, (2007)]

[M. Barth and W. Zwerger, (2011)]



  

Momentum distribution for noninteracting fermions 
in harmonic trap

Noninteracting fermions, same as density 
profile due to the x – p duality of the 
harmonic oscillator Hamiltonian

Number of peaks = number of fermions

Oscillations in the density profiles :

  ~ Friedel oscillations

  ~ 1/N decay

n(
k)

/a
ho

k a
ho



  

Momentum distributions for a multicomponent Fermi gas
at infinitely strong interactions in harmonic trap

From the exact solution

Number of peaks = number of fermions in 
each component [Deuretzbacher et al, 
arXiv:1602.0681 ]

Corresponding density profiles :

 N=6 fermions, symmetric mixtures  1+1+1+1+1+1, 2+2+2, 3+3

The case 1+1+1+1+1+1 has the same 
momentum distribution as a bosonic Tonks-
Girardeau gas with N

B
=6

A strong effect of interactions :

–  reduction of the width of the zero-momentum peak / 
opposite to broadening of the density profiles

–  large momentum tails

[Decamp et al, PRA 94, 053614 (2016)]



  

High-momentum tails for a multicomponent Fermi gas
at  infinitely strong interactions in harmonic trap

From the exact solution for n(k) (solid lines)

Asymptotic behaviour from the 1/g 
expansion of the energy (dashed lines)

The most symmetric wavefunction has the 
largest tails in n(k)

 N=6 fermions, symmetric mixtures  1+1+1+1+1+1, 2+2+2, 3+3

 Symmetry of the mixture  from the tails of the momentum distribution !  

A way to probe (generalized) antiferromagnetism

[Decamp et al, PRA 94, 053614 (2016)]



  

Numerical calculations with  DMRG 

High-momentum tails for a multicomponent Fermi gas
at finite  interactions, in harmonic trap

 N=6 fermions, log scale, mixture 3+3 g=1, 10, 100

In the imbalanced case, there is a different 
contact for each component

[Decamp et al, PRA 94, 053614 (2016)]

N=6 fermions, log scale, mixture 3+2+1  g=10

The tails increase with interaction strength



  

Local-density approximation for the momentum distribution 
tails of a 1D interacting Fermi gas in harmonic trap

 Based on the exact equation of state from Bethe Ansatz     [X.W. Guan et al PRA 2012]

 Inhomogeneous density profile – from minimization of energy functional : 

 Tan’s contact for the inhomogeneous Fermi gas : 

[Decamp et al, PRA 94, 053614 (2016)]



  

Contact vs number of components 
at infinitely strong interactions 

Exact calculations in the trap N
ν
=1,2,3

LDA on Bethe-Ansatz equation of state   
                      [X.W. Guan et al PRA 2012]

 r-component Fermi gas in harmonic trap, zero temperature

The tails increase with increasing number of 
components at fixed N

ν

– also in the Florence experiment !!

Related to 
digamma 
function



  

Contact vs interactions : DMRG + LDA results

 fermionic mixture in harmonic trap at various numbers of fermions, zero temperature

Scaling : the numerical data collapse once dividing by 

Two components

Three components

Four components

Five components

Six components

[Decamp et al, PRA 94, 053614 (2016)]

Strong correlations = = large tails of the momentum distribution

Lines : LDA on the strong-
coupling expansion of the 
BA equation of state to 
order 1 (dash) and 2 (solid)



  

High-momentum tails for a Fermi gas at high temperature

Generalization of the Tan’s sweep theorem at finite temperature :

grand-thermodynamic potential, obtained by summing 
over all the components  

– virial expansion for the grand-thermodynamic potential :

with

– solution for the two-body problem in harmonic trap [Th. Busch et al, Found. Phys. 28, 549 (1998)]

 High-temperature regime : we use a virial approach



  

High-momentum tails at finite (high) temperature

 High-temperature regime, infinite interactions 

– Universality :  no energy or length scale associated to interactions 

the virial coefficient for the contact is a number – does not depend on 
interaction or temperature [P. Vignolo, A. Minguzzi, PRL 2013]



  

High-momentum tails at finite (high) temperature

 High-temperature regime, infinite interactions 

– Universality :  no energy or length scale associated to interactions 

the virial coefficient for the contact is a number – does not depend on 
interaction or temperature [P. Vignolo, A. Minguzzi, PRL 2013]

– High-temperature contact coefficients :

The tails of the momentum distribution 
increase with temperature

 N=6 fermions, symmetric mixtures  
1+1+1+1+1+1, 2+2+2, 3+3

[Decamp et al, PRA 94, 053614 (2016)]



  

Conclusions

1D multicomponent fermions with strong  repulsive interactions

– Exact analytical solution at infinite interactions, 

– Numerical DMRG results at arbitrary interactions

The ground state has the most symmetric wavefunction 

Density profiles for different symmetries are different

Momentum distribution tails increase with interaction strength, 
number of components and temperature

Symmetry spectroscopy : tails uniquely associated to a symmetry, 
largest tails for the most symmetric configuration



  

Outlook

1D multicomponent fermions with strong  repulsive interactions :

– Larger N

– Luttinger liquid theory & beyond

– Dynamical properties 

Momentum distributions at finite temperature 
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Other Grenoble results 

Tan's contact of a harmonically trapped one-
dimensional Bose gas: strong-coupling 
expansion and conjectural approach at 
arbitrary interactions [EPJ – ST 226, 1583 (2017)]

Ground-state energy and excitation spectrum of the 
Lieb-Liniger model : accurate analytical results and 
conjectures about the exact solution  [SciPost Phys. 3, 
003 (2017)]

A connection between non-local one-body and 
local three-body correlations of the Lieb-Liniger 
model  [arXiv:1705.02100]



  

Other Grenoble results 

Strongly correlated one-dimensional Bose-
Fermi quantum mixtures: symmetry and 
correlations  [arXiv:1707.09206]

Dynamical depinning of a Tonks-Girardeau gas  [Phys 
Rev A, 92, 063605]

Dynamic structure factor and drag force in a 
strongly interacting 1D Bose gas at finite 
temperature [Phys Rev A 91 063619 (2015)]



  

Can one have ferromagnetism then ?

The highest excited branch at infinite interactions has the largest spin

[Cui and Ho, PRA 89, 023611 (2014)]

Ferromagnetism possible in the lowest gas state of the system with large 
attractive interactions (super-Tonks regime)
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