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Outline
• Topology in condensed matter systems 

• One-dimensional chiral models  

static (SSH) 

periodically-driven 
 (photonic quantum walk)



Hall effect
• Classical Hall effect (1879): 

when current flows in a 2D material, 
in presence of an out-of-plane B field,  
there appears a transverse (Hall) current 

• Quantum Hall effect (1980): 
at low temperatures and high-B,  
the Hall current is quantized! 

• Laughlin (1982): robustness due to topology 

• TKNN (1982): Kubo formula links conductivity  
            to the Chern number, a topological invariant 
            defined on the occupied bands

K. Von Klitzing  
Nobel lecture

Thouless, Kohmoto, Nightingale & den Nijs
Phys. Rev. Lett. (1982)
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Topological insulators
• Insulators in the bulk, but have robust current-carrying edge states 

• Protected by the non-trivial topology of the bulk bands against local 
perturbations, like disorder and interactions 

• Enormous progresses in the last 10 years (QSH, 3D TIs., 4D QH, …) 

• Characterization non-interacting TIs in terms of discrete symmetries  
 T: time-reversal 
 C: charge-conjugation 
 S: chiral 
 

• Beyond the periodic table: 
Mott / Anderson / crystalline / Floquet TIs, …

Chiu, Teo, Schnyder & Ryu,
Rev. Mod. Phys. (2016)

# of dimensions

Chern number

Winding

IQHE, Hofstadter, 
Chern insulators

chiral
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1D chiral systems

polyacetilene 
[Nobel prize in chemistry 2000] cavity polaritons 

[St. Jean et al., Nat. Phot. 2017]

ultracold atoms 
 in superlattices 

[M. Atala et al., Nat. Phys. 2013]

ultracold atoms 
 in k-space lattices 

[Meier et al., Nat. Comm. 2016]
SC qubits 

in mw-cavities 
[Flurin et al., PRX 2017]

optical waveguides 
[Zeuner et al., PRL 2015]



SSH model
• Spinless fermions with staggered tunnelings: 
 
 

• ∃ two sublattices 
∃ a “canonical” basis where H is purely off-diag:  

• Chiral symmetry:                      (Γ: unitary, Hermitian, local) 

• In mom. space the Hamiltonian is 2*2,  

• In the canonical basis,                              and  

• Winding: 

Su, Schrieffer & Heeger 
Phys. Rev. Lett. (1979)

Asbóth, Oroszlány, & Pályi  
Lecture Notes in Physics (2016)
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The winding W
•     may be calculated: 

from n : 

from the eigenstates :  

• What if the Hamiltonian is not known? 
Can one measure the winding?  
 
Yes, and it’s simple! 

W

skew polarization

W =

I
dk

2⇡
(n⇥ @kn)z
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W =

I
dk

⇡
S, S = ih +|@k �i

Hk = Eknk · �



• Initial condition 
 localized on the m=0 cell:  

• Mean Chiral Displacement: 

• Easy to measure: 
 

• Fast convergence

Evolution in real time

Cardano, D’Errico, Dauphin, Maffei, … & PM 
Nature Comm. (2017) 9
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SSH model in the topological phase 
+ 

independent disorder of amplitude Δ on all tunnelings 
+ 

randomly-polarized localized initial condition 
+ 

average over 50 (1000) disorder realizations 
⬇

Resistance to disorder

j j j

the MCD stays locked to the topological invariant as long as Δ<Δgap

10
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Floquet 1D chiral models
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a b c

FIG. 1. Zak phase detection through the mean chiral displacement. (a) Sketch of the setup implementing the protocol
U = Q ·W . A light beam, exiting a single mode fiber depicted on the left, performs a QW by propagating through a sequence
of quarter-wave plates (purple disks) and q-plates (turquoise disks). (b) The unit vector n(k) winds either 1 or 0 times
around the chiral axis, as k traverses the whole Brillouin zone, depending on the value of the optical retardation �. (c) Mean
chiral displacement C after a 7-steps QW of protocol U , vs. the optical retardation �. Each datapoint is an average over ten
di↵erent measurements (error bars are the associated standard errors). Purple and red dots refer, respectively, to di↵erent
input polarizations, |Li and (|Li + |Ri)/

p
2. The lines represent the function S�(t) given in equation (7), for di↵erent values

of the time t. In the long time limit, S�(t) converges to (a multiple of) the Zak phase � of protocol U .

logical invariants characterizing the system. Finally, we
prove the robustness of our detection by adding dynam-
ical disorder. To our knowledge, this is the first bulk
measurement of the Zak phases and complete topological
invariants of a 1D chiral quantum walk, and, in general,
of a driven Floquet system.

Zak phase detection in the bulk of a quantum
walk In one dimension, discrete-time QWs with chiral
symmetry display a quantized Zak phase and have been
extensively studied in the past years. Among these im-
plementations, we focus on the photonic platform pro-
posed in Ref. [41]. Here, the walk takes place on a lat-
tice whose sites |xi are associated with photonics states
|mi, corresponding to light beams that carry m~ units of
orbital angular momentum per photon along the propa-
gation axis and show a twisted wavefront [44]. The two
coin states are instead mapped onto the left and right
circular polarizations of the beam, carrying ±~ units of
spin angular momentum per photon along the propaga-
tion axis. Once the system is prepared in an initial state
| 0i, its state after t timesteps is given by

| (t)i = U t| 0i, (1)

where the single-step operator U is obtained by cascading
suitable combinations of quarter-wave plates and q-plates
[41, 45, 46]. In Fig. 1a we show a pictorial representation
of our setup that realizes a seven step quantum walk with
U implemented specifically as U ⌘ Q ·W [41]. The action
of a quarter-wave plate oriented at 90� with respect to
the horizontal direction is described by the local operator

W , rotating the polarization states as

W =
1p
2

X

m

c†
m

(�0 � i�

x

)c
m

. (2)

Here c†
m

= (c†
m,L

, c

†
m,R

) creates a particle on site m with
polarization L/R, and �

i

are Pauli matrices acting in
the coin (polarization) space. The translation operator
Q is implemented by a q-plate, a liquid crystal device
which yields an e↵ective spin-orbit interaction in the light
beam. This couples neighbouring sites and polarization
states as

Q(�) =
X

m

cos
�

2
c†
m

c
m

+ i sin
�

2

⇣
c†
m+1��cm + h.c.

⌘

(3)

where �± = (�
x

± i�

y

)/2 are the operators that flip the
coin states |Li and |Ri, and � is the optical retardation
of the q-plate. Further details on the q-plates and on the
complete experimental setup are provided in the Methods
and Supplementary Information.
Very generally, QWs are generated by the repeated ap-

plication of a unitary operator U , and therefore the sys-
tem can be described in the framework of Floquet theory.
As a consequence of translational invariance in space, the
e↵ective Hamiltonian associated to a full period is diag-
onal in momentum and may be written as

H(k) = i lnU(k) = E(k)n(k) · �, (4)

with E(k) the quasi-energy dispersion, � = (�
x

,�

y

,�

z

),
and we have set the period T and ~ to unity. The point

photonic quantum walk of twisted photons



• Collimated monochromatic beam propagating along     

• Light has linear momentum                          (“push”) 

• But it can also carry also angular momentum 

• In the “paraxial approximation”, 

• “Spin” AM:  

• Orbital AM:

Digression: twisted photons
ẑ

25th anniversary: Allen et al., PRA (1992)

p / E⇤ ⇥B

L̂z = �i~(r⇥r)z

Ŝz = ~
✓

1 0
0 �1

◆

Figure 1.1: Wave fronts of helical beams with different values of the OAM per
photon.

Figure 1.2: SAM and OAM interactions with a small trapped particle. From
Wikipedia, “Angular momentum of light”.
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circularly polarized light 
interacts with the  

particle’s spin

light with OAM 
 rotates a particle 

around the beam axis

12

Ĵz = Ŝz + L̂z



• Helical modes have a phase pattern eim𝜙 

• Their OAM is quantized, ℏm

Twisting light

Franke-Allen & Radwell  
Optics&Photonics News (2017)Figure 1.1: Wave fronts of helical beams with different values of the OAM per

photon.

Figure 1.2: SAM and OAM interactions with a small trapped particle. From
Wikipedia, “Angular momentum of light”.
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1.1.2 Laguerre-Gaussian modes
Let us come back to the paraxial Helmholtz equation shown above, and
consider a set of its solutions: the modes of Laguerre-Gauss (LG). These
beams possess a well-defined orbital angular momentum [16]. Laguerre-
Gaussian modes are written in cylindrical coordinates using Laguerre poly-
nomials and are characterized by two integer numbers, p and m, called
radial and azimuthal number, respectively. A generic Laguerre-Gaussian
mode is:

A = A0
w0

w(z)
(

r

w(z)
)|m|Lp

m(
2r

2

w2(z)
)e

� r

2

w2(z) ei[kz+k r

2
2R(z)+mf�(|m|+2p+1)z(z)]

(1.26)
where A0 is a constant, Lm

p is the generalized Laguerre polynomial of in-
dices p and m, w(z) and R(z) are, respectively, two functions measuring
the beam width and the wavefront’s radius of curvature, w0 = w(0) is the
beam waist and, finally, z(z) is a phase factor called Gouy phase. From
expression (1.26), we can deduce that p determines the radial distribution
of the field, whereas m determines its azimuthal structure and, therefore,
it is an eigenvalue of Lz. The mode with p = m = 0 is called Gaussian
beam, often indicated with TEM00.

Figure 1.3: Transverse LG intensity profiles for several radial and azimuthal
numbers.
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• Liquid crystals deposited on glass plates  
along singular patterns  
cause phase retardation of the beam  

• Q-plates mix OAM and SAM:  
 
(“spin-dependent translation”)  

• An external voltage controls the orientation of the LCs, and therefore 
the mixing parameter δ 

Q-plates

q=1/2

+

+

|", 0⟩ |", 0⟩

|&, 1⟩

|&, 0⟩ |&, 0⟩

|", −1⟩

q=1/2 q=3/2 q=3

[Marrucci et al., Phys. Rev. Lett.(2006)]

cos

2
(�/2)

sin2(�/2)
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• Cascade of Q-plates and quarter-wave plates→ discretized evolution 

• Initial state: m=0  OAM, and a given polarization

Discrete-Time Quantum Walk with twisted photons

Twisted photons DTQW
OAM (m) walker’s position

polarization (⟳/⟲) coin state (↑/↓)
Q-plate conditional displacement

timeẑ

3 
2 
1 
0 

-1 
-2 
-3Q̂ · Ŵ

Q̂ · Ŵ
Q̂ · Ŵ

Ŵ =
1

2

✓
1 �i
�i 1

◆

[Cardano et al., Science Advances (2015)]

m
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• Periodic evolution: may be treated via Floquet theory 

• One-step evolution operator U    ➙ 

• In momentum space, 

• The spectrum of Heff is 2π-periodic (quasi-energies Ek) 

• T+C+S symmetries: BDI class —> same invariant as the static SSH model

Discrete-Time Quantum Walk

2

a b c

FIG. 1. Zak phase detection through the mean chiral displacement. (a) Sketch of the setup implementing the protocol
U = Q ·W . A light beam, exiting a single mode fiber depicted on the left, performs a QW by propagating through a sequence
of quarter-wave plates (purple disks) and q-plates (turquoise disks). (b) The unit vector n(k) winds either 1 or 0 times
around the chiral axis, as k traverses the whole Brillouin zone, depending on the value of the optical retardation �. (c) Mean
chiral displacement C after a 7-steps QW of protocol U , vs. the optical retardation �. Each datapoint is an average over ten
di↵erent measurements (error bars are the associated standard errors). Purple and red dots refer, respectively, to di↵erent
input polarizations, |Li and (|Li + |Ri)/

p
2. The lines represent the function S�(t) given in equation (7), for di↵erent values

of the time t. In the long time limit, S�(t) converges to (a multiple of) the Zak phase � of protocol U .

logical invariants characterizing the system. Finally, we
prove the robustness of our detection by adding dynam-
ical disorder. To our knowledge, this is the first bulk
measurement of the Zak phases and complete topological
invariants of a 1D chiral quantum walk, and, in general,
of a driven Floquet system.

Zak phase detection in the bulk of a quantum
walk In one dimension, discrete-time QWs with chiral
symmetry display a quantized Zak phase and have been
extensively studied in the past years. Among these im-
plementations, we focus on the photonic platform pro-
posed in Ref. [41]. Here, the walk takes place on a lat-
tice whose sites |xi are associated with photonics states
|mi, corresponding to light beams that carry m~ units of
orbital angular momentum per photon along the propa-
gation axis and show a twisted wavefront [44]. The two
coin states are instead mapped onto the left and right
circular polarizations of the beam, carrying ±~ units of
spin angular momentum per photon along the propaga-
tion axis. Once the system is prepared in an initial state
| 0i, its state after t timesteps is given by

| (t)i = U t| 0i, (1)

where the single-step operator U is obtained by cascading
suitable combinations of quarter-wave plates and q-plates
[41, 45, 46]. In Fig. 1a we show a pictorial representation
of our setup that realizes a seven step quantum walk with
U implemented specifically as U ⌘ Q ·W [41]. The action
of a quarter-wave plate oriented at 90� with respect to
the horizontal direction is described by the local operator

W , rotating the polarization states as

W =
1p
2

X

m

c†
m

(�0 � i�

x

)c
m

. (2)

Here c†
m

= (c†
m,L

, c

†
m,R

) creates a particle on site m with
polarization L/R, and �

i

are Pauli matrices acting in
the coin (polarization) space. The translation operator
Q is implemented by a q-plate, a liquid crystal device
which yields an e↵ective spin-orbit interaction in the light
beam. This couples neighbouring sites and polarization
states as

Q(�) =
X

m

cos
�

2
c†
m

c
m

+ i sin
�

2

⇣
c†
m+1��cm + h.c.

⌘

(3)

where �± = (�
x

± i�

y

)/2 are the operators that flip the
coin states |Li and |Ri, and � is the optical retardation
of the q-plate. Further details on the q-plates and on the
complete experimental setup are provided in the Methods
and Supplementary Information.
Very generally, QWs are generated by the repeated ap-

plication of a unitary operator U , and therefore the sys-
tem can be described in the framework of Floquet theory.
As a consequence of translational invariance in space, the
e↵ective Hamiltonian associated to a full period is diag-
onal in momentum and may be written as

H(k) = i lnU(k) = E(k)n(k) · �, (4)

with E(k) the quasi-energy dispersion, � = (�
x

,�

y

,�

z

),
and we have set the period T and ~ to unity. The point
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a

b

c d

FIG. 2. Zak phase in the complementary timeframe. (a) Di↵erent choices of the origin of the periodic cycle lead to
di↵erent protocols. (b) Sketch of the setup implementing protocol Ũ =

p
Q ·W ·

p
Q. The two q-plates at the beginning and end

of the optical path (shown in bright green) yield an optical retardation �/2, where � is the optical retardation characterizing
bulk q-plates (turquoise). (c) The unit vector ñ(k) associated to the operator Ũ , for optical retardations 3⇡/2 < � < 2⇡, winds
twice around the chiral axis as k spans the whole Brillouin zone. (d) Mean chiral displacement C̃ after a 7-steps QW with
protocol Ũ . The datapoints are averages of ten experimental measurements, and errorbars are the associated standard errors.
Purple and orange colors refer, respectively, to input polarizations |Li and (|Li+ i |Ri)/

p
2. The lines display S�̃(t), obtained

replacing n with ñ in equation (7), for di↵erent values of the time t. At long times, S�̃ converges to the Zak phase �̃.

on the Bloch sphere identified by the unit vector n(k)
represents the coin part of the system eigenstates, while
their spatial part is a plane wave with quasi-momentum
k [41]. The function ln(x) denotes the principal branch of
the natural (matrix) logarithm, so that the quasi-energy
is a periodic function, with �⇡ and +⇡ identified.

The class of quantum walks we are considering features
chiral symmetry, since there exists a unitary operator �
such that �2 = I, and �H� = �H. These conditions
imply that � is Hermitian and that � = v� ·�, with v� a
vector labeling a point on the Bloch sphere. In this case,
the unit vector n is bound to rotate around the origin in
a plane orthogonal to v�, and the Zak phase equals

� =
1

2

Z
⇡

�⇡
dk

✓
n⇥ @n

@k

◆
· v�. (5)

The winding number �/⇡ assumes strictly integer values
and counts the number of times the unit vector n ro-
tates around the unit vector v� as k traverses the whole
Brillouin zone. In Fig. 1b we show the winding of the
vector n of the operator U , for two values of � in dif-
ferent topological sectors. The Zak phase is therefore a
bulk property; although it has strong influences in prop-
erties of systems where it arises, its detection in current
experimental architectures remains challenging.

In the following, we show that information on such
topological invariant is hidden in the subleading terms of
the mean displacement hmi, when the initial wavepacket
is localized on a single site. This extends a previous result
showing that, in the same conditions, the ballistic terms
of higher moments of the walker’s displacement feature
discontinuities at topological phase transitions [41]. Let

us consider the evolution of a wavepacket | 0i initially
localized at site m = 0, and whose polarization is char-
acterized by the expectation values of the three Pauli
matrices, s = h 0|�| 0i = h�i

 0 . The mean displace-
ment of the wavepacket after t timesteps is given by (see
Supplementary Sec. 1 for details)

hm(t)i =
Z
⇡

�⇡

dk

2⇡

⌦U�t(�i@

k

)U t

↵
 0

= h�?i 0 [L(t) + S(t)] + h�i
 0S�(t).

(6)

The term in square brackets in equation (6) is propor-
tional to h�?i 0 , the projection of the initial polarization
on a direction orthogonal to v�, and contains a ballistic
term L(t) (which grows linearly with t) and a subleading
part S(t). The vector identifying the specific direction of
�? in the plane orthogonal to v�, and the explicit func-
tional forms of L(t) and S(t), are non-universal features
which depend on the specific protocol (or timeframe),
and have no particular relevance for our discussion. The
second term in equation (6), which is weighted by h�i

 0

(the projection of the initial polarization along v�) is the
subleading chiral term S�, that may be written as (see
Supplementary Sec. 1 for details)

S�(t) =
�

2⇡
�
Z
⇡

�⇡

dk

2⇡

cos(2tE)

2

✓
n⇥ @n

@k

◆
· v�. (7)

In the limit t ! 1, S� becomes proportional to the Zak
phase, as the oscillatory correction quickly averages to
zero (see Fig. 1c).
The above analysis shows that information on the

Zak phase is contained in the mean displacement of the

He↵(k) = Ekn̂k · �

Cardano, D’Errico, Dauphin, Maffei, … Marrucci, Lewenstein & PM 
Nature Comm. (2017)

He↵ ⌘ i(logU)/T
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• Winding: 

• Experimental measurement of the MCD  
after 7 timesteps of the DTQW  
with twisted photons: 

• Check bulk-boundary correspondence 

• Spectrum with edges: 

• Bulk-boundary correspondence violated?

Detecting the invariant
W =

I
dk

2⇡
(n⇥ @kn)z

5

a

b

FIG. 3. Topological invariants and bulk-edge cor-
respondence. (a) Edge states on an open-ended lattice
[�L : L], with L = 10; the color coding indicates the de-
gree of localization � = log10(1 � h|m|i/L), with darker col-
ors indicating states more localized towards the edges. (b)
Topological invariants C0 and C⇡, obtained as in equation
(9) by combining the measurements of the mean chiral dis-
placements C and C̃ of protocols U and Ũ , and averaging the
results obtained from the two initial states (error bars are
the propagated standard errors). The dashed lines show the
long-time limit of the topological indices C0 and C⇡, yielding
respectively the number of edge states at 0- and ⇡-energy.

measurements of the mean chiral displacements measured
in the inequivalent timeframes we are now able to com-
pute the invariants C0 and C

⇡

and detect the complete
phase diagram of this system: the result is shown in Fig.
3b. Once again, our measurements show a remarkably
fast convergence towards the asymptotic limit.

Robustness to dynamical disorder. Finally, we
test the stability of the quantization of the mean chiral
displacement against disorder. In specific, we choose pro-
tocol U , and introduce dynamical disorder by o↵setting
the optical retardation �

j

(1  j  7) of each q-plate by
a small random amount |✏

j

| < � around their common
mean value �̄. In our experiment, we set � = ⇡/10 and
⇡/5. We note that this disorder is dynamic, in the sense
that it a↵ects independently the various q-plates crossed
by the beam, but crucially it respects chiral symmetry.
This can be simply understood by noting that the vector
v�, defining the chiral operator, does not depend on �.

As shown in Fig. 4, in single realizations the mean
chiral displacement presents oscillations featuring higher
amplitude for increasing disorder, but an ensemble av-

erage over independent realizations smoothly converges
to the expected theoretical result, which in the infinite
time limit gives the bulk value of the Zak phase. Here
we performed measurements on protocol U , but similar
robustness of the chiral displacement shall hold for ev-
ery 1D QW chiral protocol, and more generally every 1D
chiral system, as long of course as the disorder does not
break chiral symmetry and its strength is small compared
to the gap size to prevent inter-band transitions. As an
example, in the Supplementary Sec. 2 we show that the
mean chiral displacement is an equally robust topologi-
cal marker for a completely di↵erent and static (i.e., not
driven) system, the celebrated SSH model.

Conclusions and Outlook. Summarizing, here we
proposed an e�cient method to measure the Zak phase
of a chiral system by direct observation of its free bulk
dynamics. In particular, we showed that information on
the topological phase of the bulk is encoded in the mean
chiral displacement, an oscillatory quantity that rapidly
converges to the Zak phase, and is robust against (chiral-
preserving) disorder in both space and time.

We experimentally verified our findings by performing
the first measurement of the Zak phase of a chiral quan-
tum walk. The physical platform we chose is a photonic
setup based on the orbital angular momentum of a light
beam, where the mean chiral displacement corresponds
to the relative shift of the two chiral polarization compo-
nents. A precise readout of the Zak phase was obtained
after only 7 quantum walk steps. We further used the
same method to measure the Zak phase in a complemen-
tary timeframe, which we realized by swapping few opti-
cal components. By combining the two measurements we
extracted the two invariants providing the complete bulk-
edge correspondence for this driven system, i.e., the one
associated to the 0-energy edge state, and the one con-
nected to the anomalous ⇡-edge state. Finally, we proved
that the mean chiral displacement is a robust measure
of the Zak phase by introducing dynamical but chiral-
preserving disorder.

Although here we investigated experimentally a spe-
cific quantum walk, our results are not restricted to
QWs, nor to Floquet systems. Indeed, the mean chi-
ral displacement provides a robust topological character-
ization of arbitrary spin-1/2 1D chiral systems, either
static or periodically-driven. These may nowadays be re-
alized in a variety of platforms, ranging from ultracold
atoms in optical lattices to photonic waveguides, and
from semiconductor quantum wells to optomechanical
systems. While formerly known methods for detection
of topological properties require a uniform filling of the
band of interest, external forces, loss mechanisms, or fine-
tuning so that only edge states are populated, the method
proposed here quite remarkably achieves this goal by ob-
serving the free evolution of a single particle, initially
localized on a single site in the bulk. This aspect may
be specially beneficial for systems where filling a band
is intrinsically challenging, such as bosonic condensates
or phononic and photonic ensembles. Future interesting
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to the relative shift of the two chiral polarization compo-
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after only 7 quantum walk steps. We further used the
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of the Zak phase by introducing dynamical but chiral-
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ization of arbitrary spin-1/2 1D chiral systems, either
static or periodically-driven. These may nowadays be re-
alized in a variety of platforms, ranging from ultracold
atoms in optical lattices to photonic waveguides, and
from semiconductor quantum wells to optomechanical
systems. While formerly known methods for detection
of topological properties require a uniform filling of the
band of interest, external forces, loss mechanisms, or fine-
tuning so that only edge states are populated, the method
proposed here quite remarkably achieves this goal by ob-
serving the free evolution of a single particle, initially
localized on a single site in the bulk. This aspect may
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• Different initial t0 lead to different U 

• Eigenvalues of Heff don’t depend on t0 

• Eigenstates instead do! And so does the winding 

• Timeframes invariant under time-reflection (U1 and U2) are special 

• # of 0-energy edge states:  

• # of π-energy edge states: 

Timeframes 3

a

b

c d

FIG. 2. Zak phase in the complementary timeframe. (a) Di↵erent choices of the origin of the periodic cycle lead to
di↵erent protocols. (b) Sketch of the setup implementing protocol Ũ =

p
Q ·W ·

p
Q. The two q-plates at the beginning and end

of the optical path (shown in bright green) yield an optical retardation �/2, where � is the optical retardation characterizing
bulk q-plates (turquoise). (c) The unit vector ñ(k) associated to the operator Ũ , for optical retardations 3⇡/2 < � < 2⇡, winds
twice around the chiral axis as k spans the whole Brillouin zone. (d) Mean chiral displacement C̃ after a 7-steps QW with
protocol Ũ . The datapoints are averages of ten experimental measurements, and errorbars are the associated standard errors.
Purple and orange colors refer, respectively, to input polarizations |Li and (|Li+ i |Ri)/

p
2. The lines display S�̃(t), obtained

replacing n with ñ in equation (7), for di↵erent values of the time t. At long times, S�̃ converges to the Zak phase �̃.

on the Bloch sphere identified by the unit vector n(k)
represents the coin part of the system eigenstates, while
their spatial part is a plane wave with quasi-momentum
k [41]. The function ln(x) denotes the principal branch of
the natural (matrix) logarithm, so that the quasi-energy
is a periodic function, with �⇡ and +⇡ identified.

The class of quantum walks we are considering features
chiral symmetry, since there exists a unitary operator �
such that �2 = I, and �H� = �H. These conditions
imply that � is Hermitian and that � = v� ·�, with v� a
vector labeling a point on the Bloch sphere. In this case,
the unit vector n is bound to rotate around the origin in
a plane orthogonal to v�, and the Zak phase equals

� =
1

2

Z
⇡

�⇡
dk

✓
n⇥ @n

@k

◆
· v�. (5)

The winding number �/⇡ assumes strictly integer values
and counts the number of times the unit vector n ro-
tates around the unit vector v� as k traverses the whole
Brillouin zone. In Fig. 1b we show the winding of the
vector n of the operator U , for two values of � in dif-
ferent topological sectors. The Zak phase is therefore a
bulk property; although it has strong influences in prop-
erties of systems where it arises, its detection in current
experimental architectures remains challenging.

In the following, we show that information on such
topological invariant is hidden in the subleading terms of
the mean displacement hmi, when the initial wavepacket
is localized on a single site. This extends a previous result
showing that, in the same conditions, the ballistic terms
of higher moments of the walker’s displacement feature
discontinuities at topological phase transitions [41]. Let

us consider the evolution of a wavepacket | 0i initially
localized at site m = 0, and whose polarization is char-
acterized by the expectation values of the three Pauli
matrices, s = h 0|�| 0i = h�i

 0 . The mean displace-
ment of the wavepacket after t timesteps is given by (see
Supplementary Sec. 1 for details)

hm(t)i =
Z
⇡

�⇡

dk

2⇡

⌦U�t(�i@

k

)U t

↵
 0

= h�?i 0 [L(t) + S(t)] + h�i
 0S�(t).

(6)

The term in square brackets in equation (6) is propor-
tional to h�?i 0 , the projection of the initial polarization
on a direction orthogonal to v�, and contains a ballistic
term L(t) (which grows linearly with t) and a subleading
part S(t). The vector identifying the specific direction of
�? in the plane orthogonal to v�, and the explicit func-
tional forms of L(t) and S(t), are non-universal features
which depend on the specific protocol (or timeframe),
and have no particular relevance for our discussion. The
second term in equation (6), which is weighted by h�i

 0

(the projection of the initial polarization along v�) is the
subleading chiral term S�, that may be written as (see
Supplementary Sec. 1 for details)

S�(t) =
�

2⇡
�
Z
⇡

�⇡

dk

2⇡

cos(2tE)

2

✓
n⇥ @n

@k

◆
· v�. (7)

In the limit t ! 1, S� becomes proportional to the Zak
phase, as the oscillatory correction quickly averages to
zero (see Fig. 1c).
The above analysis shows that information on the

Zak phase is contained in the mean displacement of the

U2 U1

t

[Asboth and Obuse, PRB (2013)]

W = W1 6= W2

C0 = (W1 +W2)/2

C⇡ = (W1 �W2)/2
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Measurement of the MCD with protocol U2:

Winding in an alternative timeframe

2

p
Q� = Q�/2

 (●/●): different initial polarizations
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Bulk-boundary correspondence
a

b

Theory:

Measurements:
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• Adding noise to a trivial/non-trivial configuration:

Robustness to noise
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• Extension to multi-band models:  

• Topological transitions  
 driven by disorder: 

• 2D Hofstadter strips (ladders)

Recent developments
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Maffei, Dauphin, …, and PM 
New J. Phys, in press (arXiv 2017)

Mugel, Dauphin, PM et al. 
SciPost Physics 3, 012 (2017)

W

[work in progress]
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• The mean chiral displacement captures the winding of 1D chiral 
systems (both static and periodically driven) 

• Detection of MCD is simple, rapid, and robust to disorder and noise 

• Topological characterization of Floquet systems  
by studying different timeframes 

• Extending the MCD to other topological classes? 

• Interacting systems?

Conclusions

Thank you!


