Detection of bulk topological features in real time

Pietro Massignan

Main collaborators

Alessio D'Errico

Filippo Cardano

Lorenzo Marrucci

Maria Maffei

Alexandre Dauphin

Maciej Lewenstein

Outline

Topology in condensed matter systems

- One-dimensional chiral models
 - **■** static (SSH)

periodically-driven(photonic quantum walk)

Hall effect

- Classical Hall effect (1879): when current flows in a 2D material, in presence of an out-of-plane B field, there appears a transverse (Hall) current
- Quantum Hall effect (1980): at low temperatures and high-B, the Hall current is quantized!
- Laughlin (1982): robustness due to topology
- TKNN (1982): Kubo formula links conductivity
 to the Chern number, a topological invariant
 defined on the occupied bands

Thouless, Kohmoto, Nightingale & den Nijs Phys. Rev. Lett. (1982)

Topological insulators

- Insulators in the bulk, but have robust current-carrying edge states
- Protected by the non-trivial topology of the bulk bands against local perturbations, like disorder and interactions
- Enormous progresses in the last 10 years (QSH, 3D Tls., 4D QH, ...)
- Characterization non-interacting TIs in terms of discrete symmetries

T: time-reversal

C: charge-conjugation

S: chiral

					# of dimensions							
IOLIC Liefata dtar	Class	T	C	S	0	1	2	3	4	5	6	7
IQHE, Hofstadter,	A	0	0	0	\mathbb{Z}	0	\mathbb{Z}	Che	rn ກເ	ımbe	$_{r}$ \mathbb{Z}	0
Chern insulators	AIII	0	0	1	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
	AI	+	0	0	\mathbb{Z}		0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2
chiral -	BDI	+	+	1	\mathbb{Z}_2	\mathbb{Z}	Wir	nding	0	$2\mathbb{Z}$	0	\mathbb{Z}_2
	D	0	+	0	\mathbb{Z}_2	L 2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0
	DIII	_	+	1	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$
	AII	_	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0
	CII	_	_	1	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0
	C	0	_	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0
	CI	+	_	1	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}

Chiu, Teo, Schnyder & Ryu, Rev. Mod. Phys. (2016)

1D chiral systems

polyacetilene [Nobel prize in chemistry 2000]

ultracold atoms in superlattices [M. Atala *et al.*, Nat. Phys. 2013]

cavity polaritons
[St. Jean *et al.*, Nat. Phot. 2017]

optical waveguides [Zeuner et al., PRL 2015]

ultracold atoms in k-space lattices [Meier *et al.*, Nat. Comm. 2016]

SC qubits in mw-cavities [Flurin et al., PRX 2017]

SSH model

Spinless fermions with staggered tunnelings:

Su, Schrieffer & Heeger Phys. Rev. Lett. (1979)

Asbóth, Oroszlány, & Pályi Lecture Notes in Physics (2016)

- ∃ two sublattices
 - \exists a "canonical" basis where H is purely off-diag: $H=\left(\begin{array}{cc} 0 & h^\dagger \\ h & 0 \end{array}\right)$
- Chiral symmetry: $\Gamma H\Gamma = -H$ (Γ : unitary, Hermitian, local)
- In mom. space the Hamiltonian is 2*2, $H_k = E_k \mathbf{n}_k \cdot \boldsymbol{\sigma}$
- In the canonical basis, $\mathbf{n}_k \perp \hat{\mathbf{z}} \qquad \forall k$ and $\Gamma = \sigma_z$
- Winding:

The winding W

• ${\cal W}$ may be calculated:

$$H_k = E_k \mathbf{n}_k \cdot \boldsymbol{\sigma}$$

- from \mathbf{n} : $\mathcal{W} = \oint \frac{\mathrm{d}k}{2\pi} (\mathbf{n} \times \partial_k \mathbf{n})_z$
- from the *eigenstates*: $\mathcal{W} = \oint \frac{\mathrm{d}k}{\pi} \mathcal{S}$,

$$\mathcal{S} = i \langle \psi_+ | \partial_k \psi_- \rangle$$

skew polarization

What if the Hamiltonian is not known?
 Can one *measure* the winding?

Yes, and it's simple!

Evolution in real time

• Initial condition localized on the m=0 cell:

Mean Chiral Displacement:

$$C(t) \equiv 2\langle \widehat{\Gamma m}(t) \rangle = 2 \int_{-\pi}^{\pi} \frac{\mathrm{d}k}{2\pi} \left\langle U^{-t} \sigma_z(i\partial_k) U^t \right\rangle_{\psi_0} = 2 \int_{-\pi}^{\pi} \frac{\mathrm{d}k}{2\pi} \sin^2(Et) \left| \mathbf{n} \times \partial_k \mathbf{n} \right| \xrightarrow{t \to \infty} \mathcal{W}$$

Easy to measure:

$$C(t) = 2\left[\langle m_{\mathbf{A}}(t)\rangle - \langle m_{\mathbf{B}}(t)\rangle\right]$$

Fast convergence

Resistance to disorder

SSH model in the topological phase $j'=2j o \begin{cases} \mathcal{W}=1 \\ \Delta_{\mathrm{gap}}=2j \end{cases}$

$$j' = 2j \quad \rightarrow \quad \left\{ \begin{array}{l} \mathcal{W} = 1\\ \Delta_{\text{gap}} = 2j \end{array} \right.$$

independent disorder of amplitude Δ on **all** tunnelings

randomly-polarized localized initial condition

average over 50 (1000) disorder realizations

the MCD stays locked to the topological invariant as long as $\Delta < \Delta_{\rm gap}$

Floquet 1D chiral models

photonic quantum walk of twisted photons

Digression: twisted photons

25th anniversary: Allen et al., PRA (1992)

- Collimated monochromatic beam propagating along ẑ
- Light has linear momentum $\mathbf{p} \propto \mathbf{E}^* \times \mathbf{B}$ ("push")
- But it can also carry also angular momentum
- In the "paraxial approximation", $\hat{J}_z = \hat{S}_z + \hat{L}_z$
- "Spin" AM: $\hat{S}_z = \hbar \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
- Orbital AM: $\hat{L}_z = -i\hbar(\mathbf{r} \times \nabla)_z$

SAM interaction

circularly polarized light interacts with the particle's spin

OAM interaction

light with OAM rotates a particle around the beam axis

Twisting light

- Helical modes have a phase pattern $e^{im\phi}$
- Their OAM is quantized, $\hbar m$

Franke-Allen & Radwell Optics&Photonics News (2017)

Q-plates

 Liquid crystals deposited on glass plates along singular patterns cause phase retardation of the beam

Q-plates mix OAM and SAM:

("spin-dependent translation")

• An external voltage controls the orientation of the LCs, and therefore the mixing parameter δ

Discrete-Time Quantum Walk with twisted photons

Cascade of Q-plates and quarter-wave plates→ discretized evolution

• Initial state: m=0 OAM, and a given polarization

$$\hat{W} = \frac{1}{2} \left(\begin{array}{cc} 1 & -i \\ -i & 1 \end{array} \right)$$

Twisted photons	DTQW					
OAM (m)	walker's position					
polarization (୯/৩)	coin state (↑/↓)					
Q-plate	conditional displacement					
$\hat{\mathbf{Z}}$	time					

[Cardano et al., Science Advances (2015)]

Discrete-Time Quantum Walk

- Periodic evolution: may be treated via Floquet theory
- One-step evolution operator $U \implies H_{\text{eff}} \equiv i(\log U)/T$
- In momentum space, $H_{\text{eff}}(k) = E_k \hat{\mathbf{n}}_k \cdot \boldsymbol{\sigma}$
- The spectrum of $H_{\rm eff}$ is 2π -periodic (quasi-energies E_k)
- T+C+S symmetries: BDI class —> same invariant as the static SSH model

Detecting the invariant

• Winding: $\mathcal{W} = \oint \frac{\mathrm{d}k}{2\pi} \left(\mathbf{n} \times \partial_k \mathbf{n} \right)_z$

 Experimental measurement of the MCD after 7 timesteps of the DTQW with twisted photons:

(•/•): different initial polarizations

• Spectrum with edges:

darker colors:

"edgier" states

Bulk-boundary correspondence violated?

Timeframes

- Different initial t_{θ} lead to different U
- Eigenvalues of $H_{
 m eff}$ don't depend on $t_{
 m 0}$

Eigenstates instead do! And so does the winding

$$\mathcal{W} = \mathcal{W}_1 \neq \mathcal{W}_2$$

- Timeframes invariant under time-reflection (U_1 and U_2) are special
- # of 0-energy edge states: $C_0 = (\mathcal{W}_1 + \mathcal{W}_2)/2$
- # of π -energy edge states: $C_{\pi} = (\mathcal{W}_1 \mathcal{W}_2)/2$

[Asboth and Obuse, PRB (2013)]

Winding in an alternative timeframe

Measurement of the MCD with protocol U_2 :

(•/•): different initial polarizations

Bulk-boundary correspondence

Robustness to noise

Adding noise to a trivial/non-trivial configuration:

(•/•): averages over 10 disorder realizations

Recent developments

Extension to multi-band models:

Maffei, Dauphin, ..., and PM New J. Phys, in press (arXiv 2017)

 Topological transitions driven by disorder:

[work in progress]

2D Hofstadter strips (ladders)

Mugel, Dauphin, PM et al. SciPost Physics 3, 012 (2017)

Conclusions

- The mean chiral displacement captures the winding of 1D chiral systems (both static and periodically driven)
- Detection of MCD is simple, rapid, and robust to disorder and noise
- Topological characterization of Floquet systems by studying different timeframes

- Extending the MCD to other topological classes?
- Interacting systems?

